Module 5: Factoring Introduction

"Ask yourself if what you are doing today
Is getting you closer to where you want to be tomorrow"

5.1 GCF AND FACTORING BY GROUPING

Largest number and the most variables that you can divide out of each term is called the \qquad .

Steps to find the GCF:

1. Find the prime factorization of the terms.
2. Find the common factors in each of the terms.
3. Multiply the most the common factors together.

Ex. Find the GCF of: $45 \quad 60 \quad 75$
Ex. Find the GCF of:
$20 x^{5} y^{6}$
$150 x^{7} y^{3}$

Ex. Find the GCF of: $\quad 42 a^{3} b^{2} \quad 63 a b^{5} \quad 21 a^{5} b^{4}$

Applying GCF

Simplify $3 x(2 x+5)$

Now factor using GCF to return to the original problem
\qquad is the opposite of the distributive property.
You can always check a factoring problem by \qquad _.

Ex. Factor: $\quad 10 a^{2} b^{4}+15 a^{3} b^{2}$

Ex. Factor: $\quad 3 x^{5} y^{10}-9 x^{7} y^{4}+21 x^{2} y^{12}$

Ex. Factor: $\quad 65 y^{9} v^{18}+20 y^{30} v^{20}+30 y^{18} v^{4}$

At the start of any factoring problem, always look for \qquad .

Factoring by grouping is the same as factoring with \qquad , except that we are factoring out a group of terms.
Ex. Factor:
$3(x+2)-x(x+2)$

Steps to factoring by grouping:

1. Group the first and the last \qquad terms together,
2. Pull out the \qquad from each group.
3. Now pull out the common \qquad (should match).

Note: When there is \qquad terms, try factoring by grouping.
Ex. Factor: $\quad-2 y^{3}-6 y^{2}-3 y^{2}-9 y$

Ex. Factor: $\quad x^{3}+9 x^{2}+10 x+90$

Ex. Factor: $\quad 10 \mathrm{k}+10 \mathrm{~m}-\mathrm{km}-\mathrm{m}^{2}$

Homework Checklis \dagger
\square Section 5.1 Factor GCF and Factoring by Grouping

5.2 factoring Trinomials (Leading Coefficient is 1)

Ex. Multiply (using F.O.I.L.): $(x-2)(x+5)$

Factoring trinomials is the \qquad of F.O.I.L.

Steps to factoring trinomials:

1. Find the prime factorization for the \qquad term.
2. Looking for 2 numbers that \qquad to the last term.
3. Same 2 numbers should \qquad to the middle term.

Ex. Factor: $\quad x^{2}+3 x-10$

To get the leading term of x^{2}, each first term will be x.
So we start with:

of the last terms must be -10 . What are the options?

\qquad
\qquad
___ and \qquad
Which of these options adds to the middle term of +3 ?
\qquad and \qquad

Plug in the combination into each set of parentheses.

The order in which you fill in your parentheses does not matter.
Remember to always check your answers by multiplying (F.O.I.L.)

Ex. Factor: $\quad x^{2}-2 x-24$

Always start a problem by looking for the \qquad first. Ex. Factor: $\quad 2 x^{3}+14 x^{2}+20 x$

Must factor out the \qquad if the leading coefficient is negative.

Ex. Factor: $\quad-x^{2}+14 x-45$

Homework Checklis \dagger
\square Section 5.2 Factoring Trinomials (Leading Coefficient is 1)

